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Generating functions for connected embeddings in a lattice: IV. 
Site percolation 

M F Sykes 
Wheatstone Physics Laboratory, King's College, University of London, Strand, London 
WC2R 2LS, UK 

Received 25 September 1985 

Abstract. The method of partial generating functions is applied to the problem of site 
percolation. It is concluded that the direct generation of site perimeter polynomials, 
although feasible, is likely to be less efficient than the corresponding generation of bond 
perimeter polynomials. The theory of percolation on a bipartite graph is developed and 
an alternative method of expanding the mean number of clusters for both site and bond 
mixtures without recourse to perimeter polynomials is described; a general prescription 
for the required generating functions is given. 

1. Introduction 

In this paper we examine the application of the techniques described in three previous 
papers (Sykes 1986a, b, c, hereafter referred to as I, I1 and I11 respectively), to the 
site percolation problem. In 111 we used the method of partial generating functions 
to derive perimeter polynomials for bond mixtures. For site mixtures perimeter poly- 
nomials for the more usual crystal lattices are given by Sykes and Glen (1976) and 
Sykes et al (1976); these data were obtained by machine enumeration and as we have 
stressed previously such enumerations are very demanding of computer time. A detailed 
introduction to the site problem is given in the papers cited. 

In 111, 0 2 we gave an expression for the bond perimeter of a weak embedding; 
the simple form of this expression enabled the required perimeter polynomials to be 
generated by the introduction of a single auxiliary variable. This auxiliary variable 
recorded the number of dejcit bonds; the usefulness of the concept rested on the fact 
that in every case the deficit bonds for a weak embedding all lay in the corresponding 
associated section graph. 

Suppose a strong embedding in a lattice of coordination number Z has S sites and 
B bonds; then from each site there radiate Z lattice bonds each of which leads to a 
perimeter site unless the lattice bond contributes to B. If no perimeter site were adjacent 
to more than one cluster site the required site perimeter would be SZ - 28.  Extending 
the ideas of 111 we can define a de jc i t  site of degree v to be a site adjacent to ( U  + 1) 
sites of the cluster; if A V  denotes the number of these, the analogue of (2.2) of 111 is 
an expression for the site perimeter in the form 

2 - 1  

S Z - 2 B -  1 vA,. 
" = l  
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2432 M F Sykes 

Unlike deficit bonds, which lie inside the associated section graph, deficit sites lie 
outside the associated section graph (the latter now identified with the strong embedding 
itself). It is still possible to write down unrestricted generating functions for all the 
clusters and their site perimeters but such functions have to carry much more detail 
and call for the use of labelled ancillary variables; the algebraic computing problem 
is much more intricate and correspondingly slower. The fundamental inversion of I 
is, however, still applicable and the derivation of perimeter polynomials with its aid 
would probably prove more efficient than direct enumeration if the initial investment 
in programming were thought worthwhile. However, for the type of applications we 
have in mind (the development of series expansions for the mean number and size of 
clusters, for example) recourse to perimeter polynomials can be avoided and we shall 
instead develop alternative procedures. 

Since the method of partial generating functions exploits the sublattice symmetry 
of bipartite lattices it is convenient to generalise the site percolation problem and 
consider bipartite percolation; that is, to allow the two sublattices of A and B sites to 
be occupied with probability a and /3 respectively, the case a = /3 = p corresponding 
to the simple site problem for which every site is occupied with probability p .  To 
illustrate one general method of deriving series expansions without recourse to 
perimeter polynomials we shall study as a detailed example the expansion for the 
mean number of clusters; the coefficients in this case have a well known graphical 
interpretation (a star expansion, treated in detail by Essam and Sykes (1966)). For 
example, on the body-centred cubic the initial terms of the expansion of the mean 
number of clusters, K ( p ) ,  at low densities, for the symmetric case a = /3 are 

K =p-4p2+12p4- 12p5+7p6+. . . (1.2) 

and we illustrate the graphical interpretation of these coefficients below. 

Number of strong 
embeddings 

Graph (per site) Strong K - wt 

e 1 1 

V 4 - 1  

0 l 2  
+ l  

1 

U 4 + 1  

+ l .  

Since the two sets of A and B sites are symmetric, the detailed analysis above enables 
the corresponding expansion for the bipartite problem to be written down by inspection 
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as 

K = f( a + p )  - 4ap + 12a2P2 - 6a2P2( a + p ) + 4a3p3 + $a2p2( a2 + p 2 )  + . . . . ( 1.4) 

The direct application of the star expansion method to the series (1.2) calls for a 
vertex grouped list of strong embeddings of stars in the lattice; such a list is quite 
difficult to prepare. We have therefore sought to extend the general theory of sublattice 
symmetry developed in 1-111 to the derivation of the mean number expansion in its 
bipartite form (1.4) by providing appropriate partial generating functions. We show 
in § 2 how expansions for the mean number of clusters on a bipartite graph can be 
obtained by the use of generating functions. 

2. The mean number of site clusters on a bipartite graph 

We take as a specific example the bipartite graph of the figure which we have already 
used in 1-111. 

I I \ /  
o/---, --o 
J K 

We first consider the situation when all three A sites, Z, J, K are occupied. The results 
of § 3 of I enable a complete description of all the possible embeddings that could 
arise to be generated by use of the restricted section graph enumerators; for our present 
purpose each embedding is to be weighted by the number of its connected components. 
The variable b may be omitted from the generating function and the work can be set 
out as follows: 

G*[IJK] ={y+5y2+4y3+y4}  weight 1 

weight 2 

weight 3 

I G*[I, JK] = { I 
G*[J, ZK] = {2y + y 2 }  

G * [ K  Z J I  = {Y I 
G*[ Z, J, K ]  = { 1) 

and we obtain as the weighted total 

3 + 7y + 7y2+4y3 + y'. 

Alternatively the calculation may be performed using unrestricted enumerators. In 
this case the weights can be derived by applying the fundamental inversion of I and 
we find for our example 

G [  ZJK] = { 1 + 4y + 6 y 2 +  4y3 + y'} weight 1 

weight 1 

G [  I, JK ] = { 1 I 
G[J, ZK] = (1 +2y + y 2 }  

G [ K  131 = (1 + y  1 
(2.3) 

J ,KI=  (1) weight -1 
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and these yield the same weighted total (2.1). The probability that I, J and K are all 
occupied is a3;  the probability that every B site that occurs in the above enumeration 
is occupied, while the remainder are unoccupied, is obtained by replacing y" everywhere 
by p"(1 -p)4-" since there are four B sites. We thus obtain for the mean number of 
clusters when I, J and K are occupied: 

K I j K  z= a3{3-5P +4p2-p3} .  (2.4) 

By repeating the logic for all three cases when only two of the A sites are occupied 
we readily obtain corresponding polynomials: 

KIj = C Y 2 (  1 - a )  (2 - 2 p  + p'} 
KjK 5 Q '( 1 - CY) (2 - 3 p  + 3 p 2  - p'} (2.5) 

KjK = ~ ~ ( 1 - ~ ~ ) { 2 - / 3 } .  

To obtain (2.5) we have only to use enumerators, restricted or unrestricted with 
appropriate weights, applied in turn to the graph obtained by deleting from G the 
unoccupied A site and any incident edges, and then make the appropriate probability 
substitutions. Likewise we can obtain expressions for the cases when only one A site 
is occupied: 

KI = CY( 1 - ~ ) ~ ( l )  

KJ = C Y (  1 - a)'{ 1 + 2p) 

K ~ = Q ( I - Q ) ~ ( I + ~ )  

and finally if no A site is occupied 

KO= (1 - ~ ) ~ { 4 p } .  (2.7) 

K = 3 Q + 4 p  - 9 ~ p  + 4a 2p2 - Q ' p 3 .  (2.8) 

By collecting together all these contributions we thus obtain finally 

This result is readily verified to be in agreement with the graphical interpretation we 
have quoted earlier; the term 4a2P2, for example, corresponding to the four four-sided 
polygons that can be embedded in G. In subsequent applications, when we exploit 
the sublattice symmetry of crystal lattices, only the coefficient of Q' will be found to 
make a significant contribution for a graph with three A sites; in our particular example 
this turns out to be zero. Notice however that this latter result cannot be deduced 
from (2.4) alone; it is necessary to consider the contribution from cases where fewer 
than three A sites are occupied; this is only to be expected since A sites that are not 
occupied can occur as perimeter sites of some embeddings. 

3. General prescription for the mean number of clusters in terms of unrestricted 
enumerators 

To apply the method of the previous section to other examples we require a general 
prescription for the weights (2.3) which enable the calculation to be performed in 
terms of unrestricted enumerators; as we have shown in earlier applications made in 
I, I1 and 111 it is these latter enumerators that are most easily obtained in practice. 
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Consider first the general case of four occupied A sites set out in the form (2.1) 
and using the notation of I, 0 3, (3.13): 

-f? =f4 -fi,3 -h,z + 2h.i.i - 6f1,1~,1 weight 1 

f T 3  = f1.3 - 2f2,1,1+ 8fl,l,l,* weight 2 

f l . 2  = f z . 2 -  f2.1,i + 3f1,1,1,1 weight 2 (3.1) 

f l , l , l  = f2,i.i -6f1,1,1,1 weight 3 

"fY,l,l,l = f l , l , l J  weight 4. 
From the treatment of I, Q 4, the sum of all the coefficients of the elements in the above 
array that correspond to restricted partitioned enumerators of m parts and any one 
unrestricted partitioned enumerator of n parts is just S*( n, m ) ,  the Stirling number 
of the first kind. For example if we take m = 2 the coefficients in (3.1) above that 
correspond to f;E,3, fl,, and sum to -3 or S*(3,2); likewise those that correspond 
to E,3, fl** and f1.1.1.1 sum to 11 or S*(4,2). 

By taking the unweighted sum of the equations (3.1) 

f l + f l , 3 + f l , Z + f l , l , I  + fT . l , I , l  =f4 (3.2) 
and we recover the starting point of the logical procedures of I, 0 3, where the relation 
(3.2) is taken as evident. The cancellation of all the coefficients except that of f4 on 
the right-hand side of (3.2) is ensured by the elementary identity 

m 
S*(n, m )  = O  m > l  

m = 1  
(3.3) 

For the mean number each entry on the left-hand side of (3.1) has to be weighted by 
the number of components; on the right-hand side each coefficient in the total will 
now be 

and we obtain at order 4 

f4 'f3.l +h,2 -f2,1,1 + 2fl , l , l , l  * (3.5) 
The procedure of the last two sections can be modified to derive the mean number of 
bond clusters. For the graph of our example the possible embeddings are now 
summarised by the restricted subgraph enumerators: 

4. The mean number of bond clusters on a bipartite graph 

The procedure of the last two sections can be modified to derive the mean number of 
bond clusters. For the graph of our example the possible embeddings are now 
summarised by the restricted subgraph enumerators: 

G*( I J K )  = b3 + 14b4+49b5 + 65 b6+ 34b7+ 9b8+ b9 

G*(I, J K )  = b2+6b3+12b4+8b5 

G*( J, I K )  = 3b2 + 20b3 +47b4+ 45b5 + 15b6+ 2b7 

G*( K ,  I J )  = 2b2+ 13 b3 + 29b4+ 24b5 +4b6 
G*(I, J, K )  = 1+9b+30b2+44b3+24b4. 

(4.1) 
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In (4 .1)  we have omitted the variable x, which is no longer relevant, and the 
unweighted total reduces to ( 1  + b)'. If we adopt the null cluster convention, under 
which a bond cluster is defined as a connected choice of sites (and therefore includes 
isolated sites), we can form as before the weighted sum of the enumerators (4 .1)  to obtain 

(4 .2)  

and the only clusters excluded from the enumeration will be isolated B sites. To 
convert to the probabilities p, that a bond is occupied, and q = 1 -p ,  that a bond is 
unoccupied, we make the substitution p"q9-" for b" in (4 .2) .  On adding the mean 
number of isolated B sites which for example is 3q2+  q3 we obtain finally 

3 + 27b + 102b2+21 1 b3 + 262b4+203 b5+  103 b6+38b7 + 9b8 + b9 

K ( p )  = 7 - 9p + 4p4+p6 - 2p7 + p 8 + p 9 .  (4 .3)  
This result could equally well be obtained using the more convenient unrestricted 

generators; the appropriate weights are those already found in 0 3 for the site problem. 
If desired, the correction for isolated B sites could be made by redefining appropriate 
enumerators to include them. The derivation of the mean number of bond clusters in 
a bond mixture that we have given above is not restricted to bipartite graphs. The 
whole logical procedure we have described in 1-111 can be appropriately recast to 
study the connectivity of embeddings in a general graph (for an example of this 
alternative formulation see Uhlenbeck and Ford (1962)) .  Although the two classes of 
A and B sites do not appear in the final result (4 .3)  it is possible to exploit the fact 
that the graph is bipartite. The coefficients in (4 .3)  have a well known graphical 
interpretation (a star expansion, treated in Essam and Sykes (1966)) ;  the constant term 
is given by the number of sites; thereafter every star of n bonds contribute to p" with 
a weight (the weak k - wt of the star). In our example the coefficient of p6 comes from 
two stars: 

the hexagon:. (2 embeddings) k - w t + + l  U 
the theta graph: ( 1  embedding) k - wt = - 1 .  

The first of these contains three A sites and the second only two. By applying the 
principle of inclusion and exclusion and evaluating the mean number function in turn 
for all the graphs obtained by deleting from G every choice of A sites and any incident 
edges we' can distinguish between the two contributions above. The procedure follows 
the same general pattern as that of the previous section; modifying the notation so 
that KIj denotes the mean number for the graph with Z and J deleted the work can 
be set out as follows: 

KIjK = 7 - 9 p  + 4p4+p6-2p7  - p 8 + p 9  -KjK = -6 + 5p 

- K I K = - 6 + 7 p - 3 p 4 + p 6  - K j ~ = - 6 + 6 p - p ~  + K 1 = 5 - 4 p  

(4.4) 

(4.5) 
corresponds to the contribution from star graphs with three A sites; the contribution 
of the theta graph to p 6  in our example has been deleted. 
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5. Summary and conclusions 

We have found the direct generation of site perimeter polynomials is likely to be less 
efficient than the corresponding generation of bond perimeter polynomials described 
in 111. We have developed an alternative method, without recourse to perimeter 
polynomials, of expanding the mean number of clusters for both site and bond mixtures. 
For site mixtures we have shown how to derive the function K ( a ,  p )  explicitly for a 
bipartite graph; in a subsequent paper this will enable us to exploit the sublattice 
symmetry of the body-centred cubic and simple cubic lattices and derive the function 
K (  p )  without the use of a site grouped list of strong star embeddings. For bond 
mixtures we have shown how to derive the function K ( p )  explicitly for a bipartite 
graph and also how to obtain that part of K ( p )  that corresponds to the contribution 
of star embeddings with a full complement of A sites; in a subsequent paper this will 
enable us to check the accuracy of the bond grouped list of weak star embeddings 
used to derive the mean number expansions ((4.1) and (4.2) of 111). 

The methods we have used to derive expansions for the mean number function 
can be generalised in a straightforward way to derive expansions for other properties 
of interest such as the mean size of finite clusters. We have not described such 
generalisations because the series for the mean number combined with the data already 
available on perimeter polynomials has proved sufficient for the applications we have 
made so far. 
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